Announcements

1) HW\#4 due next Thursday

Example 1: $f(x, y)=x^{2} y^{4}$,
find absolute maximum and minimum on the Unit disk:

$$
\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}
$$

Boundary: unit circle

$$
x^{2}+y^{2}=1 .
$$

1) Find partials

$$
\frac{\partial f}{\partial x}=2 x y^{4}, \frac{\partial f}{\partial y}=4 x^{2} y^{3}
$$

$(0, y)$ or $(x, 0)$ all give

$$
\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}=0 .
$$

2) Boundary: $x^{2}+y^{2}=1$, so

$$
x^{2}=1-y^{2}
$$

Plug into $f(x, y)=x^{2} y^{4}$ to give

$$
\begin{aligned}
g(y) & =\left(1-y^{2}\right) y^{4} \\
& =y^{4}-y^{6}
\end{aligned}
$$

Apply Call I maximin to g^{\prime} :

$$
g^{\prime}(y)=4 y^{3}-6 y^{5}
$$

set equal to zero

$$
\begin{aligned}
0 & =4 y^{3}-6 y^{5} \\
& =2 y^{3}\left(2-3 y^{2}\right)
\end{aligned}
$$

$y=0$ or $2-3 y^{2}=0$
already
found

$$
y=\underbrace{ \pm \sqrt{\frac{2}{3}}}_{\text {new }}
$$

Check endpoints:
since $x^{2}+y^{2}=1$,

$$
-1 \leq y \leq 1,50
$$

$y=-1, y=1$ are the
endpoints.
3) Plug all points back in!

For 1), we found $(0, y)$ and $(x, 0)$.

Plug these into $g(x, y)=x^{2} y^{4}$, we always get zero.

From 2), we found the points $y= \pm 1, y= \pm \sqrt{\frac{2}{3}}$ Plug into

$$
\begin{aligned}
& g(y)=y^{4}-y^{6} \\
& g(1)=g(-1)=0 \\
& g\left(\sqrt{\frac{2}{3}}\right)=g\left(-\sqrt{\frac{2}{3}}\right) \\
& \\
& =\frac{4}{9}-\frac{8}{27} \\
& \\
& =\frac{4}{27} \neq 0
\end{aligned}
$$

Smallest number we found is $0<a b s o l u t e$ min

Largest number we found is $\frac{4}{27} \leftarrow$ absolute \max

Differentiability

Consider $z=f(x, y)$.
We say f is differentiable at a point (a, b) in \mathbb{R}^{2} if

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)-f(a, b)}{\|(x, y)-(a, b)\|}
$$

exists

If f is differentiable at (a, b), then by holding $x=a$ or $y=b$, respectively, and taking the limit of the other variable, we get that

$$
\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b) \text { exist. }
$$

Connection to Partials

If $\frac{\partial f}{\partial x}(a, b)$ and $\frac{\partial f}{\partial y}(a, b)$
both exist and are continuous at (a, b), then
f is differentiable at (a, b).

Absolute Maxima and Minima

Recall: Extreme Valve Theorem:
any continuous function on a closed interval attains its maximum and minimum.

We generalized this to functions $z=f(x, y)$ on closed and bounded regions in \mathbb{R}^{2}.

Closed and Bounded Regions in \mathbb{R}^{n}
A subset S of \mathbb{R}^{n} is said to be bounded if for all $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ in S, there is a number $r \geq 0$ such that

$$
\begin{aligned}
\|x\| & =\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} \\
& \leq r
\end{aligned}
$$

In $\mathbb{R}^{3}: S$ bounded means there is a sphere about the origin of some finite radius that contains S.

A subset S of \mathbb{R}^{n} is Said to be closed if it contains its "boundary".

Examples: solid spheres in \mathbb{R}^{3}

Not closed: $\{(x, y, z) \mid x>0\}$

Extreme Value Theorem in \mathbb{R}^{n}

Given a real-valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, if f is continuous, then f attains its maximum and minimum on any closed and bounded region D in \mathbb{R}^{n}.

Example 2: (\#43, section 14.7)
Find three positive numbers whose sum is 100 and whose product is a maximum.

Let's call the positive numbers a, b, and c.
product: $a b c=f(a, b, c)$
sum: $a+b+c=100$.

1) find ∇f

$$
\begin{gathered}
f(a, b, c)=a b c \\
\frac{\partial f}{\partial a}=b c, \frac{\partial f}{\partial b}=c a, \frac{\partial f}{\partial c}=a b
\end{gathered}
$$

Set all partials equal to zero:

$$
0=b c=c a=a b
$$

cant happen if a, b, c are positive.

If we permitted a, b, or c to be zero, we'd get solutions, but then the product $a b c=0$, minimum, not a maximum.
2) Boundary condition

$$
a+b+c=100
$$

Solving for a,

$$
a=100-b-c
$$

$$
\begin{aligned}
f(a, b, c) & =a b c \\
& =(100-b-c)(b c) \\
& =100 b c-b^{2} c-c^{2} b \\
& =g(b, c)
\end{aligned}
$$

Take gradient of 9

$$
\begin{aligned}
& \frac{\partial g}{\partial b}=100 c-\partial b c-c^{2} \\
& \frac{\partial g}{\partial c}=100 b-b^{2}-2 b c
\end{aligned}
$$

Set partials equal to zero

$$
\begin{aligned}
0 & =100 c-2 b c-c^{2} \\
& =100 b-2 b c-b^{2} \\
0 & =100 c-2 b c-c^{2}
\end{aligned}
$$

since $C \neq 0$, divide by c to get

$$
\begin{aligned}
& 0=100-2 b-c \\
& c=100-2 b
\end{aligned}
$$

Plug into $0=100 b-2 b c-b^{2}$

$$
\begin{aligned}
& 0=100 b-2 b(100-2 b)-b^{2} \\
& 0=100-2(100-2 b)-b \\
&=-100+3 b \\
& 3 b=100, b=\frac{100}{3} \\
& c=100-26 \\
&=100-\frac{200}{3}=\frac{100}{3} \\
& a+b+c=100,50 a=\frac{100}{3}
\end{aligned}
$$

Already covered the remaining boundary points in 1), so
3) $a=b=c=\frac{100}{3}$

General Procedure
For finding the absolute max and min for a continuous function f on a closed and bounded set D,

1) Find all critical points of f in D
2) Take the equation for the boundary of D, plug into f. This reduces the number of variables of f by at least one and obtains a function.

Find all critical points of g.
3) Take all points found in 1) and 21, plug back into f. Largest value $=$ absolute max, Smallest value $=$ absolute min.

